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Abstract

Previous studies (Carslaw, 1988; Thomas, 1989; Niskanen & Keloharju, 2000) have shown that companies' 
managers tend to round-up the first digits of reported earnings (i.e. for companies reporting profits). 
According to Carslaw (1988), this type of behaviour is inspired by the existence of the so-called $1.99 
phenomenon where a price of $1.99 is perceived as being abnormally lower than one of $2.00. In the current 
study, we try to determine whether a sample of students (laboratory experiment)  also engage in this type of 
'earnings rounding-up behaviour'. Analogous to the earlier studies, our study compares observed and expected 
frequencies for the second-from-the-left digit in  earnings proposed by the students. Our results suggest that the 
students  tend to round  earnings. 

Introduction

 In an article published in 1881, the mathematician and astronomer Simon Newcomb notes that the first 

pages of his logarithm table book are more worn than the others.  He deduces that the searchers prefer to work 

on numbers starting with 1 rather than by 2;  numbers starting with 2 being preferred with those starting with 3, 

etc.  Intuitively this observation will appear strange insofar as one could think that there is a equiprobability of 
appearance of the various figures.

From this surprising discovery, the mathematician proposes the following formula indicating the probability that 

a number extract from a statistical set has C as first digit (C is an integer  between 1 and 9):  log10 [1 + (1/C)]. 

This discovery is passing unnoticed and it is only 57 years later that a physicist of General Electric, Franck 

Benford, makes the same observation as Newcomb (always with the logarithms tables).  However, Benford will 

spend many years to collect data to validate this law.  His article in 1938 registers twenty lists of numbers with 

20 229 observations coming from varied sources, such as geographic, scientific and demographic data to test this 

law. Several empirical studies demonstrated the utility of this law to detect fraud (digital analysis).

The objective of this short paper is to examine how men and women falsify the loss of a balance sheet. Are there 

gender differences in cheating behavior ? The paper is organized into three sections.  Section 1 describes 

Benford’s law who is origin of digital analysis.  Section 2 will present a synthesis of the empirical studies 

devoted to the application of this law in fraud detection. Section 3 presents a laboratory study :  a sample of 393 
students (185 men and 208 women) had to translate a loss in a profit in a balance sheet.

1. The Benford’s law

  In a data set obeying Benford’s law,  approximately 30.1 % of numbers have 1 as first digit whereas 

this percentage falls to 4.6 % for the numbers having 9 as first digit.  This law can be generalized with the 

second, third, etc digits.  Once can formalize this law for numbers having two digits c1 c2;  (for example, 

number 23 has two digits, the first digit c1 is 2 and the second digit c2 is  3);   the generalization to N digits is 

immediate :

- probability of the event :  the first digit of a number of a data set is c1 :

P(C1 = c1) = log10 (1 + (1 / c1)) with c1  1;2;3;4;5;6;7;8;9
- probability of the event:  the second digit of a number of a data set  is c2 :

                                9

P(C2 = c2) =  log10 ( 1 + (1/ c1 c2)) with c2  {0 ; 1; 2; 3; 4; 5; 6; 7; 8; 9}
                   c1 =1

Thus the probability that a number of a data set obeying the Benford’s law is 23 is  log10 (1 + (1 / 23)) = 0.0184.  

For 3 digits, the formula becomes  simply :

P(C1C2C3= c1c2c3) = log10 (1 + (1 / c1c2c3)).  The following table shows the expected frequencies in the first 

three positions.
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Table 1:  Benford’s law : expected digital frequencies

Position in Number

Digit First Second Third Fourth Fifth

0

1

2

3

4

5

6
7

8

9

0.30103

0.17609

0.12494

0.09691

0.07928

0.06695
0.05799

0.05115

0.04576

0.11968

0.11389

0.10882

0.10432

0.10031

0.09668

0.09337
0.09035

0.08757

0.08499

0.10178

0.10138

0.10097

0.10057

0.10018

0.09979

0.09940
0.09902

0.09864

0.09827

0.1002

0.1001

0.1001

0.1001

0.1000

0.1000

0.0999
0.0999

0.0999

   0.0998

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000
0.1000

0.1000

   0.1000

Note:  the number 482 has 3 digits :  4 is the first digit, 8 the second

 and 2 the third.  This table shows that under Benford’s law the 

expected proportion of numbers with a first digit 4 is 9.69 % 

(8.75 % with 8 as second digit and 10.09 % with 2 as third digit).

The following example allows to understand intuitively the Benford’s law.  Suppose that the size of a 

company is 10 000 employees the first year.  This size grows 10 % each year.  The first digit of the size’s 

number will be one during eight years (one as first digit reappears in the 26th year, i.e. a size higher than 100 000 

employees).  Two as first digit appears four times.  Nine appears only once for a size lower than 100 000 (25th

year).  This is an important property of the Benford’s law.  When the numbers of such data sets are ordered in an 

increasing way, they follow roughly a geometrical continuation (roughly because in a Benford’s data set, two 
numbers can be identical). Three others conditions are necessary to have a Benford’s data set :  

- the data set must constitute a homogeneous unit:  populations of cities, surfaces of lake, value of shares, 

etc.  

- the data should not have of lower (except zero) or higher limit.  Thus, for example, by studying the 

reimbursements of meal’s expenses of a company, there will be strong probability that this data set do 

not obey a Benford’s law because the firm will plan a upper limit for reimbursement.

-  the data should not be codified like the telephone numbers, the postal codes, the  social security 

numbers, etc.  It is obvious that such data set will not obey Benford’s law.

Another fundamental property of the Benford’s law is the scale invariance [ Pinckam, 1961 ].  In other words, if 

a such data set is multiplied by a nonnull constant, the new data set will also obey the same law.  Thus, if a data 

set of shares valued in euros obeys the Benford’s law, this data set valued in dollars or yens will have the same 

property.  This is a problem in cases of fraud by systematic under or overvaluation.
In 1993, in State of Arizona v. Xayne James Nelson, the accused was found guilty of trying to defraud 

the state of nearly 2 millions dollars.
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Table 2 : Check Fraud in Arizona

Date of Check Amount in dollars

October 9, 1992

October 14, 1992

October 19, 1992

1 927.48

27 902.31

86 241.90

72 117.46
81 321.75

97 473.96

93 249.11

89 658.17

87 776.89

92 105.83

79 949.16

87 602.93

96 879.27

91 806.47
84 991.67

90 831.83

93766.67

88 338.72

94 639,49

83 709.28

96 412.21

88 432.86

71 552.16

Total 1 878 687.58

Source : Nigrini M.J. [1999]

Several facts would have drawn attention to :  

- as is often the case in fraud, the embezzler started small and then increased dollar amount.  
- the amounts of check fraud are lower than 100 000 dollars.  Generally, there is a upper limit which requires an 

authorization. By not exceeding this limit, the evader does not want to draw  attention ;  

- the frequency of ten digits is very different from those of Benford.  More than 90 % of the amounts have 7,8 or 

9 as first digit.

.- the manager repeats unconsciously certain digit’s sequences.  For the first two digits, 87, 88, 93 and 96 appear 

twice. For the last two digits, 16, 67 and 83 appear twice.  There is a preference (comprehensible!)  for the high 

digits:  160 digits were used to draw the 23 cheques.  From 0 to 9, the frequencies are respectively 7, 19, 16, 14, 

12, 5, 17, 22, 22 and 26.

2. Digital analysis and fraud detection

 The empirical studies concerning Benford’s law  have always the same issue :  insofar as a accounting 

data set follows the Benford’s law,  tests who shows significant variations between the observed frequencies and 

the theoretical frequencies can highlight fraud.  The first application is due to Carslaw [1988].  This author is 

interested in the second digit of the profit of a sample of New Zealand firms.  He notes that for the second digit 

there is an excess of 0 and a lack of 9.  The reason is simple : the managers will tend to round up the firm’s profit 

in order to embellish the situation.  Consider a profit of 4.98 millions euros.  Rounding this number to 50 

millions allows to reach a psychological influence whose importance will be greater whereas the second number 

is only marginally more important than the first.

This first study is followed by Thomas [1989] who studied U.S. firms samples.  He studies Earnings 

before extraordinary items and discontinued operations at the quarterly and annual level. His study is finer 

because he distinguishes the profits from the losses.  He also notes an excess of 0 for the second digit of profits.  
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In loss cases, one rounds down (less 0 and more 9) whereas in the profit level, one will round rather up.  At the 

per share level, the author notes that  multiples of 5 and 10 cents are observed considerably more often than 

others numbers.

Note that we didn’t observe this phenomenon in a sample of French firms extrated from Diane (a 

French database).  The studied variable is the profit (no losses). The accounting period is closed in 1998.  The 

firms whose 1998 result  was lower than 9 thousands of French francs were eliminated.  This elimination is logic 

because in the database, variables are valued in thousand of French francs and tests concerns the first two digits.  

So the sample has 81 259 firms profits.

Table 3 : first digit frequencies of 81 259 French firms profits

First digit Expect Actual Bias Z

1

2

3

4

5

6

7

8

9

0.3010

0.1761

0.1249

0.0969

0.0793

0.0669

0.0580

0.0512

0.0458

0.2991

0.1742

0.1251

0.0984

0.0790

0.0672

0.0585

0.0523

0.0464

-

-

+

+

-

+

+

+

+

1.2228

1.4321

0.1072

1.4074

0.1649

0.2452

0.6324

1.4155

0.8275

Chi-square Degrees of freedom Level of significance

7.6291 8 0.4705

Note:  the expected proportions are those of Benford’s Law. The Bias column reads + if the actual 

proportions exceed those of Benford’s Law, and – otherwise. The null assumption is the following one:  

the observed frequencies are not significantly   different from those of the Benford’s law.  Variable Z is 
calculated as follows :  Z = (|pr - Pt | - 1/2N) / V (Pt X (1 - Pt)/n) where Pt is the theoretical frequency, 

Pr the real frequency and N the total number of observations.  The term (1/2N) is a continuity correction 

term and is only used when it is smaller than the first term in the numerator.  The null assumption will 

be rejected when variable Z is higher than 1,96 with a risk error of 5 %  (2,51 for a risk  error of 1 %).

Table 4 : second digit frequencies in 81 259 French firms profits

Second digit Expect Actual Bias Z

0

1

2

3

4
5

6

7

8

9

0.1197

0.1139

0.1088

0.1043

0.1003
0.0967

0.0934

0.0904

0.0876

0.0850

0.1206

0.1150

0.1084

0.1040

0.1001
0.0962

0.0930

0.0915

0.0869

0.0843

+

+

-

-

-
-

-

+

-

-

0.7726

1.0259

0.4081

0.3008

0.2387
0.4795

0.3622

1.1697

0.6497

0.6579

Chi-square Degrees of freedom Level of significance

4.1556 9 0.9009

In Tables 3 and 4 the theoretical frequencies of the Benford’s law  are compared with the observed 

frequencies.  The observed frequencies are very close to the theoretical frequencies as well for the first digit as 

for the second.  The variable Z tests the null assumption " the observed proportion is equal to the theoretical 

proportion " does not reveal any significant difference for the two tables.  The chi-square test does not detect any 

significant difference between the observed distribution and the theoretical distribution for the first two digits.

The preceding studies concerns data sets companies. Nigrini [1996] analysed Tax returns on the U.S. 
Internal Revenue Service Individual Tax Model Files. The digital frequencies of Interest Received and Total 

Interest Paid (with 70 725 observations in 1985 and 54 737 observations in 1988) were analysed because the 

evasion distortion would be that interest paid numbers are overstated and that interest received numbers are 

understated. Nigrini distinguishes the unplanned evasion (UPE) from planned evasion (PE).  In the first case, the 

taxpayer manipulates line items at filling time : the typical example is the taxpayer who will never declare 

interests received by a foreign bank. In the second case, there are planned actions to conceal an audit trail.  The 
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act to falsify a number is influenced by the manner of thinking the number.  Rosch E [1975] showed that the 

manipulation of a number is generally done in the same row of this last.  Thus, if this number is between 10 and 

99, the invented number has very strong probabilities to be included in this interval.  For the first digit of 

received interests, one generally notes who the observed frequencies are higher than the theoretical frequencies 

for the small figures (and conversely for the high figures).  For the  interests paid, one notes the opposite 

phenomenon:  for the first digit, the observed frequencies of the small figures are lower than the theoretical 

frequencies (and opposite for the high figures).  The excess of small figures for interest received suggests 

minoration by certain taxpayers whereas the excess of large figures for the interests paid suggests an increase by 

certain taxpayers.

3 Laboratory study : discussion and results

In the experiment, 393 BA students play the role of evader.  In a balance sheet with a very important loss, 

the students must transform the loss in a profit ;  the proposition must be included between  100 000 to 999 999 

(six digits).  The balance sheet was accompanied by the following text :

" Accountant director in a multinational, you note that the last balance sheet reveals a catastrophic situation 

because the loss is higher than a billion French francs.  In order to preserve appearances, you decide to falsify 

this loss by putting a profit.  Your accountant will preserve active total assets = total liability.  The suggested 

profit will be between 100 000 and 999 999 thousands French francs in order not to wake up suspicions ".  The 

students are in a situation of unplanned fraud: the loss is 1 255 663 thousands French francs. The students must  

spontaneously  propose another number of six digits.

If one asks people to generate series of numbers, those are absolutely not random (for a good review of 
literature, see Tune [1964]). Indeed, people cannot generate randomly numbers. Ted Hill [1998] reports an 

instructive experiment inspired of T Varga [Revesz, 1978] :  " I ask the students to make the following test.  If 

the maiden name of their mother starts with a letter between A and L, they toss two hundred times a coin and 

note the result.  In the other case, they propose themselves a two hundred numbers serie of heads or tails.  The 

following day, I collect the results and separate in a general astonishment actual random series from the others 

with 95 % of success.  Although the rigorous demonstration is difficult, I observe the following rule :  in a two 

hundred tosses serie,  six consecutive heads or tails appear with a very small probability. An person trying to 

imitate randomly numbers set seldom writes such long homogeneous series ".  If people are not able to generate 

randomly series, it is of course possible to find artificial means  [Neuringer, 1986].

The objective of the experiment is to study the relationship between the Benford’s law and the unplanned fraud.  

Insofar as men or women cannot imitate random and so evaders too, do the invented numbers follow the 

Benford’s law ?  In others terms, knowing that the evader falsifies numbers among other numbers obeying the 
famous law, can one consider that there is an  contamination effect ?  Our experiment is relatively similar of T.P. 

Hill [1988] which had required of a sample of  742 students to propose a number of six digits.  The null 

assumption was  the following : the distribution of digit i (for i=1 to 6) obeys a Benford’s law.  The Chi-square 

test is used to validate the assumptions (the Kolmogorov-Smirnov test is not used, but he confirms the Chi-

square test).  The results are summarized in the following tables. 

Table 5 : Descriptive statistics of the sample (393 students)

185 men 208 women Total

Minimum

Maximum

Mean
Standard deviation

First quartile

Median

Third quartile

100 000

999 999

           412 867.42
           259 703.06

203 789

342 029

600 000

100 000

999 999

           391 398.95
           244 824.43

              200 000

             306 020.5

              555 555

100 000

999 999

401 504.97
251 842.73

200 000

327 466

561 200

Table 6 : digit frequencies proposed by the students
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Digits First digit  (men) Second digit (men) Third digit (men) Fourth digit (men) Fith digit (men) Sixth digit  (men)

Bias Z Bias Z Bias Z Bias Z Bias Z Bias Z

0

1

2

3

4

5

6

7

8

9

-0.0686

0.0131

0.0156

0.0004

0.0019

0.0358

-0.0256

0.0137

0.0137

1.9539

0.3712

0.5306

0.0178

0.0958

1.7986

1.3300

0.6799

0.7158

0.0641

-0.0274

0.0209

-0.0341

-0.0030

0.1303

-0.0339

-0.0471

-0.0605

-0.0093

 2.5729**

  1.0576

  0.7952

  1.3952

  0.0140

5.8749**

  1.4589

  2.1067*

 2.7832**

  0.3229

0.1415

-0.0527

0.0288

0.0075

-0.0677

0.0516

-0.0237

-0.0287

-0.0122

-0.0442

  6.2421**

2.2544*

   1.1763

   0.2187

  2.9467**

2.2172*

   0.9556

   1.1861

   0.4311

   1.8968

0.1755

-0.0569

0.0515

0.0405

-0.0406

0.0297

0.0080

-0.051

0.0242

-0.0133

  7.8279**

2.4555*

2.2092*

   1.7123

   1.7163

   1.2264

   0.2424

 2.2021*

   0.9745

   0.4824

0.1703

-0.0676

-0.0081

0.0081

-0.0405

0.0081

0.0081

-0.0459

0.0081

-0.0243

   7.5972**

   2.9409**

0.2451

0.2451

1.7155

0.2451

0.2451

1.9606*

0.2451

0.9803

0.2135

-0.0189

-0.0081

-0.0027

-0.0568

-0.0405

0.0027

-0.0135

-0.0405

-0.0351

   9.5578**

0.7352

0.2451

0.1225

 2.4507*

1.7155

0.1225

0.4901

1.7155

1.4704

Chi-square 10.4962 57.6555 63.0223 81.8558 70.7297 99.8108

Degrees of 
freedom

8 9 9 9 9 9

Level of 

significance

0.2319 3.78X10-9 3.49X10-10 6.91X10-14 1.09X10-11 1.72X10-17

Digits First digit (women) Second digit (women) Third digit (women) Fourth digit (women)      Fith digit (women) Sixth digit (women)

Bias Z Bias Z Bias Z Bias Z      Bias         Z Bias Z

0

1

2

3

4

5

6

7

8

9

-0.0751

0.0787

-0.0047

-0.0056

0.0218

-0.0237

0.0237

0.0017

-0.0169

  

  2.2847*

   2.8895**

0.1022

0.1541

1.0350

1.2278

1.3166

0.1136

1.0014

0.0788

-0.0528

0.0133

-0.0407

-0.0138

0.1349

-0.0323

-0.0420

-0.0214

-0.0239

   3.3942**

 2.2889*

   0.5054

   1.8076

   0.5469

   6.4648**

1.4820

1.9922*

   0.9698

   1.1133

0.1723

-0.0389

-0.0817

-0.0044

-0.0473

0.1214

-0.0369

-0.0461

-0.0169

-0.0213

   6.2421**

  2.2544*

1.1763

0.2187

   2.9467**

  2.2172*

0.9556

1.1861

0.4311

1.8968

0.1739

-0.0473

0.0153

-0.0424

0.0057

-0.0038

0.0154

-0.0374

-0.0374

-0.0421

   8.2359**

  2.1549*

0.6190

1.9207

0.1608

0.0684

0.6271

1.6832

1.6815

1.9112

0.2606

-0.0663

-0.0519

-0.0423

-0.0519

0.0202

0.0442

-0.0327

-0.0663

-0.0135

   9.5578**

0.7352

0.2451

0.1225

    2.4507*

1.7155

0.1225

0.4901

1.7155

1.4704

0.2462

-0.0615

-0.0423

0.0154

-0.0712

-0.0423

-0.0135

-0.0135

0.0058

-0.0231

11.7180**

   2.8428**

1.9183

0.6240

   3.3051**

1.9183

0.5316

0.5316

0.1618

0.9938

Chi-square 17.6398 128.3608 230.0919 154.4173 70.7297 291.5525

Degrees of 

freedom

8 9 9 9 9 9

Level of 

significance

0.0241 2.57X1023 1.57X1044 6.91X10-14 1.09X10-11 1.61X1057

Note :  Bias = actual frequency – Benford’s theoretical frequency

Deviations significantly different from zero at the five (one) percent level  are identified by * (**).
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Table 6 : digit sizes of men and women propositions

First 

digit

Second 

digit

Third 

digit

Fourth 

digit 

Fith 

digit

Sixth 

digit

Digits M W M W M W M W M W M W

0

1

2

3

4

5

6
7

8

9

43

35

26

18

15

19
6

12

11

47

53

25

19

21

9
17

11

6

34

16

24

13

18

42

11
8

5

14

44

8

24

12

16

49

13
11

21

10

45

9

24

20

6

28

14
13

16

10

57

13

4

20

11

46

13
11

17

16

51

8

9

26

11

24

17
9

14

16

57

11

24

12

22

20

24
13

13

12

50

6

17

20

11

20

20
10

17

14

75

7

10

12

10

25

30
14

7

18

58

15

17

18

8

11

19
16

11

12

72

8

12

24

6

12

18
18

22

16

Sum 185 208 185 208 185 208 185 208 185 208 185 208

Chi-square 13.9543 14.5016 22.6238 18.0600 15.5354 8.7532

Degrees of 

freedom

8 9 9 9 9 9

Level of 

significance

0.0830 0.1056 0.0071 0.0345 0.0772 0.4604

Note : M: men and W: women

Through both experimental and survey-based studies, numerous studies have found women to be more 

trust-worthy and public-spirited that men. For example, women are more likely to exhibit helping behavior 

[Eagly and Crowley, 1986] ; score more hignly on integrity tests [Ones and Viswesvaran, 1998] ; take stronger 

stances on ethical behavior [Glover et al., 1997; Reiss and Mitra, 1998] ; and behave more generously when 
faced with economic decisions [Eckel and Grossman, 1998b]. Dollar D., Fishman R. and Gatti R. [2001] find 

that the greater the representation of women in parliament, the lower the level of corruption. But in our 

experiment, the Wilcoxon-Mann-Whitney test demonstrates no significative difference between the two samples 

(men and women). Very few gender differences have been found (for a survey of gender differences in economic 

decision, see  Eckel and Grossman [1998a]):  the Chi-square test shows a significative difference between the 

two samples only for the third and fourth digits.

The other main findings are :  

- for the six digits, the distributions suggested by the students  are very different from a Benford’s 

distribution. But there is one exception :  men imitate the Benford’s law for the first digit.

-  another significant fact is the excess of zeros which is very important (significant at 1 %). There is an 

excess of fives for the second and third digit.

Conclusion

Benford’s law is a logarithmic function discovered by Newcomb predicting the frequency of digits in 

certain data sets.  If, for the first digit, the variations between theoretical frequencies with those of random are 

relatively important (30.1 % to 4.58 % versus 11.11 %), for the second digit, the variation is reduced until 

becoming almost null  from the fifth digit. Through a laboratory study with 393 students, we find no significative 

difference between men and women cheating behavior.  But they fail to imitate Benford’s law because there are 

excess of zeros and fives.
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